530117

2001 Small Payload Rideshare Conference Naval Postgraduate School, Monterey, CA May 31, 2001

The Living with a Star Space Environment Testbed Program

Janet Barth, NASA/GSFC LWS/SET Program Manager

Outline

- LWS Program Formulation
- · LWS Goals
- LWS/Space Environment Testbed Concept
- Program Status

Living With a Star (LWS) Science Missions: A Network to Quantify the Sun-Earth Connected System

Living With a Star Theory & Modeling

Objective

Perform research to refine the understanding of space weather & the role of solar variability in terrestrial climate change

Approach

- Improve understanding of space weather & solar variability
- Improve understanding of solar variability & its effect on long term climate change
- Perform research & development to enable improved environment specification models & predictive capability

Scope

Solar atmosphere to Earth's ionosphere

Living With a Star Space Environment Testbeds

Objective

Improve the engineering approach to accommodate and/or mitigate the effects of solar variability on spacecraft design & operations

Approach

- Collect data in space to validate new & existing ground test protocols for the effects of solar variability on emerging technologies & components
- Develop & validate engineering environment prediction & specification models, tools, & databases
- Collect data in space to validate the performance of instruments for LWS science missions & new space technology

Scope

Spacecraft hardware & design /operations tools whose performance changes with solar variability

Development of **Space** Systems

- Systems must perform in complex Sun-Earth environments
- Environments vary with solar activity
 - Long term solar cycle
 - Events on the Sun
- · Variable environments pose challenge for system developers
 - Design phase
 - Operational phase
- Models are used to predict performance of systems
 - Inputs
 - · Estimates of environment levels
 - · Results of ground test protocols
 - Design margins are used to account for inaccuracy in prediction methods
- Large uncertainties in models preclude use of environmentally sensitive technologies
- Model development & validation efforts have not kept pace with technology changes

Changes in System Design Environment

- Demise of environment hardened market
- Commercial demand for electronics
- · Short mission development times
- · Smaller, lighter spacecraft
- More demanding mission requirements
- · Desire to operate in more severe environments
- Consequences
 - Use of commercial off the shelf (COTS) components
 - Use of emerging technologies
 - Higher environment specifications
- Result
 - Risk avoidance → Risk management
 - Accommodations in Design Phase → Accommodations in Flight
 - Capability is eroded with environment accommodation overhead

LWS/SET Implementation Plan

SET Implementation

- · Establish Steering Committee
- Design modular carrier concepts to capitalize on launch opportunities
- · Fly orbiting testbed every 2 years
 - -Missions of opportunity in FY04
 - -Full carrier in FY05
- · Hold bi-yearly workshops
- · Leverage off other programs
- Fund NASA Research Announcements

Space Environment Testbeds (SET Advisory Structure

SET Steering Committee

Chair: Janet Barth, GSFC Co-Chair: Kenneth LaBel, GSFC NASA Centers LWS/SET Partners

SET Working Groups

Materials
Microelectronics
Detectors/Sensors
Spacecraft Charging/Discharging
Environment Monitirolng

Steering Committee Functions:

- Represent organization's integrated set of technology needs
- Prioritize technical importance of tasks across all areas in response to (customer) needs
- Coordinate with technology developers & other technology customers

Technology Working Group Functions:

- Provide expertise as technology providers
- Develop candidate tasks for the LWS SET & prioritize them
- Review & coordinate technical products& issues with other technical providers

LWS/Space Environment Testbed

- Common support hardware and software to validate several sub-systems or components on orbit
 - Each mission will include a suite of appropriate environment sensors (space radiation, plasma, etc.) based on the technology experiment needs and launch constraints.
- NASA provides launch, on-orbit operation, and data return.
- Standard agreement with payload partners requires partners to provide ground test data, on-orbit data after reduction, and funding for integration.
- Partnering agreement is negotiable based on NASA interest and partner contribution to launch.

SET Space Flight Candidates:

- Technology that requires space flight for performance characterization or validation
- Technology candidates applicable to more than one mission or to a LWS mission
- Technology whose performance changes due to the effects of solar variability
 - Performance changes cannot be minimized by changing the spacecraft design

SET Data Analysis Candidates:

 Data that describe performance variations in space in the presence of a spacecraft that changes due to solar variability

Program Status

LWS Program Status

- NASA/HQ NRA in FY00 for Theory and Modeling
- LWS Funded for FY01
- Science Architecture Team (SAT) appointed by NASA/HQ
 - First meeting was in November 2000
 - SAT Workshop and Meeting in January & May 2001
- · Solar Dynamics Observer
 - Science Definition Team Formed
 - Launch Date FY06
- · Geospace Missions
 - Study team formed
 - Goal is to characterize & understand "geoeffectiveness" of solar variability
 - Magnetosphere & lonosphere
 - Includes Space Environment Testbeds
 - Seek "Mission of Opportunity" for FY05

Space Environment Testbed Status

- Technology Provider Workshop in August 2000
- Pre-NASA Research Announcement Workshop on January 25-26 2001
- NRA focus areas
 - Instrument investigations LWS Geospace AO
 - Flight experiment development November 2001
 - Engineering tool and model development July 2001
- · Concept studies
 - Environment modeling requirements for SET
 - Methods for flight validation of sensor technologies
 - SET Carrier requirements
- SET Missions
 - FY04 Missions of Opportunity
 - FY05 Microelectronics carrier with LWS Geospace Missions

Summary

- LWS is research science focused to facilitate enabling science
- LWS architecture is formulated under the NSF/AF Space Weather Architecture
- LWS aids technology infusion into space through the SET Program
- Partnering is required to achieve LWS goals

SET Technologies - Backup

Technology Development

DARPA and DoD have invested >\$100M in the development of SiGe Technology at IBM and elsewhere

- High-speed (approaching 100 Ghz)
- Low noise
- Low power consumption
- Mixed signal capabilities
- Standard Si compatible

NASA has keen interests

- RF/Microwave/Communications
- Mixed signal/System-on-a-chip
- Ultra-high speed data transfer
- Low-noise instrumentation
- Potential extreme temperature applications

Example: SiGe Technology Flowdown for SET -**Ground Test** Technology Development **Ground Test Protocol** Development SiGe Damage Data Proton irradiation test fixture

The NASA Electronic Parts and Packaging (NEPP) Program along with DoD is in process of developing technology radiation sensitivity models - Dose and damage tests have been performed with encouraging results - Preliminary single event data indicates a single event sensitivity*. FY01/02 plans focus on single event testing, modeling, and hardening - Test protocols available NLT FY03 - NEPP also supporting reliability modeling of SiGe - Total investment >>\$1M * Single event environment is solar-modulated

Example: Spacecraft Charging Technology Flowdown for SET - Technology Development

Technology Development

GOES 8

MUNIN 7 - 6 kg

Spacecraft flying in high electron populations can no longer afford to be protected by Faaday cages

Spacecraft charging may be the dominant cause of anomalies in the natural space environment

- Deep dielectric charging
- Surface charging

Symptoms include

- Distortion in science measurements
- Arcing
- Increased contamination risk
- Reduced spacecraft power
- Anomalies in electronics similar to single particle induced effects

Technologies of interest

- Materials interaction with plasma/ electrons
- NASA, DoD and commercial aerospace all have programs in this arena

